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Abstract. This paper presents a new model for the Internet graph (AS graph) based on the concept of
heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in [5] to grow a
random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to
generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations
and an analysis of the standard parameters measured in our model, compared with measurements from
the physical Internet graph.

PACS. 89.75.-k Complex systems – 89.75.Hc Networks and genealogical trees – 89.75.Da Systems obeying
scaling laws – 89.75.Fb Structures and organization in complex systems – 89.65.Gh Economics;
econophysics, financial markets, business and management

1 Introduction

1.1 Motivations

The observations made by the three Faloutsos brothers [6]
in 1999 were a striking revelation for the computer science
community: Internet topology is not what was expected
but follows “scale-free” properties, such as power-laws on
the degree distribution and other parameters. These prop-
erties do not match the standard laws of the classic Erdös-
Rényi random graph model. The models used to date for
simulations, prediction and mathematical proofs do not
match the “real networks”. “Scale-free” properties mean
that the parameters of the system do not have typical val-
ues, in particular, very high values are reasonably probable
(as opposed to Gaussian distributions). The distribution
of the degrees (numbers of distinct connections) measured
on the Internet autonomous systems (ASs)1 graph follows
a power law: the number of ASs connected to d other ASs
is proportional to d−β with β ≈ 2.1. Interestingly enough,
the value of β is stable over several years.

Ever since, much research has been conducted in order
to try to explain these facts, by proposing various random

a e-mail: nicolas.schabanel@ens-lyon.fr
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1 There are essentially two levels for studying the physical

graph of the internet: the router level (230 000 to 650 000 nodes,
depending on the exploration) and the AS level (about 12 000
nodes). An autonomous system (AS) is an independent entity,
such as a university, a local network... The AS graph is basically
the hierarchical level along which packets are routed.

graph models. These models are important to obtain bet-
ter predictions or simulations of network behavior (such
as virus spreading [11]), but also, hopefully, to build a new
theoretical framework for more formal results.

1.2 Previous results

Different models aim to reproduce as closely as possible
the power laws measured regularly on the Internet: ex-
amples are BRITE [10], INET [7], ... These models are
very sophisticated and follow reasonably the distributions
observed (as long as one manages to compile their gener-
ators). However, these models do not offer satisfying ex-
planations of the dynamics going on, and certainly do not
allow the construction of a simple theoretical framework.

The first model leading to power law on degrees, known
as linear preferential attachment, is due to Albert and
Barabàsi [1]. In this model, nodes are inserted one after the
other and every new node is connected to a fixed (or ran-
dom) number of existing nodes, chosen with a probability
proportional to their current degree. [1] shows that the dis-
tribution of the degrees d is a d−3 law. Another interesting
possible explanation for the observed power laws was pro-
posed by Kumar et al. [9] for the Web graph (the directed
graph of the HTML pages connected by hyperlinks). In
their model, nodes are again inserted one after the other;
each new node (1) is connected to a fixed (or random)
number of existing nodes, chosen uniformly, and (2) copies
some of the links of a fixed (or random) number of exist-
ing nodes, chosen again uniformly. This model yields also
a power law on the degree distribution. More recently,
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inspired by the work of [3], Fabrikant, Koutsoupias and
Papadimitriou in [5] propose a new model, which grows a
random tree incrementally: every new node is connected
to a pre-existing node that minimizes a trade-off between
cost and efficiency. They show that the degree distribution
of the nodes is heavy tailed, and raise the conjecture that
power laws, often qualified “signature of human behavior”,
may be the product of greedy multi-criteria optimization.
This question deserves to be studied in detail. The FKP
tree model was further studied theoretically in [2,8].

1.3 Our contribution

This article aims to evaluate how the optimization-based
scheme suggested in [5] may effectively apply to the In-
ternet. The first challenge is to obtain a model which gets
closer to the dynamic observed for the Internet (see [4])
yet still remains simple. The second is to obtain a time-
efficient generation. Our new model generalizes the model
of [5] by growing a graph with a dynamic similar to the
one observed by [4] for the Internet. We compare the re-
sult of an important simulation study using our model to
the classical measures of Internet topology, and we pro-
pose an analysis of the parameters of our model to get as
close as possible to these target values. We observe that
parameters values in our model are close enough to those
observed on the Internet, to validate the concept intro-
duced in [5]. This gives a new plausible explanation for
the power laws observed in the Internet structure. Our
study ends with suggestions for improving our model, in
particular by adding capacities to the links, which cor-
responds to a real request of the network community in
order to conduct reliable simulations.

2 The model

Our model is a generalization of the FKP random
growing tree introduced by Fabrikant, Koutsoupias and
Papadimitriou [5], that we will describe first.

2.1 The original FKP model

Inspired by the work of Carlson and Doyle on power laws
and fault tolerance maximization (see [3]), the authors
of [5] propose to build a random tree as follows. The se-
quence of nodes is a sequence of random points (xi) chosen
uniformly in the unit square [0, 1]2. The first point x0 is
the root of the tree, and every new point xi gets con-
nected to the pre-existing node xj , j < i, in the tree that
minimizes:

d(xi, xj) + θ h(xj , x0) (1)

where θ is the parameter of the model2, and where
d(xi, xj) and h(xj , x0) are, respectively, the Euclidean dis-
tance between xi and xj in [0, 1]2, i.e. the length of the

2 The original parameter in [5] is α = 1/θ. Adopting θ im-
proves readability, by first avoiding a lot of 1/α and, second,
because θ is the length parameter of the model.

link from xi to xj (the cost for drawing the link), and
the hop distance from xj to the root x0 in the tree, i.e.
the “operating cost”. The tree grows by greedily optimiz-
ing a trade-off between two opposite costs: the cost for
building the edge, and the operating cost of the resulting
network (assuming that nodes only communicate with or
through the root). The model exhibits an interesting phase
transition-like behavior for the degree distribution of the
n first nodes of the tree: for θ > 1/

√
2, one always get a

star; for θ < 1/4, as long as n � 1/θ2, the degree distri-
bution is exponential; but as soon as n � 1/θ2, the degree
distribution becomes heavy tailed. The authors raise the
conjecture that “power law-like” distributions observed in
human activities, may be the product of “balanced” trade-
off optimization (referring to the fact that heavy tailed
distribution appears for relatively “balanced” values of θ
relatively to n). Kenyon and Schabanel [8] have shown the
same kind of transition if one draws from every new node,
two links, instead of one, to the two nodes xj and xj′

that minimizes (1); let us denote this model FKP2. The
FKP tree was studied further by Berger et al. [2]. They
show that its degree distribution did not follow a “stan-
dard power law” in the sense that it has way too many
leaves (n− o(n)). Furthermore, Kenyon and Schabanel [8]
demonstrate that when θ is constant, only a small num-
ber of nodes are grand-fathers. The FKP model is thus,
as is, a poor model for the Internet, but opens interesting
questions: may trade-off optimization yield new and easy
models for growing networks?

2.2 Our model

As seen above, the models FKP, which builds a tree, or
FKP2, which has no degree 1 node, are not satisfying can-
didates to model the Internet. We extend the FKP ap-
proach to propose a new, more realistic model, following
more closely the observed Internet dynamic. According
to [4], AS graph dynamic from 1998 to 2000 had the fol-
lowing characteristics:

Fact 1: Most new nodes have degree 1 (87%) or 2 (12%)
when created;

Fact 2: About 50% of the links appear independently from
node creations;

Fact 3: One node (resp. a link) is deleted every third node
creation (resp. second link creations) — which induces
an exponential growth. Furthermore, AS (resp. link)
deletions are strongly correlated with AS (resp. link)
creations.

The correlation in Fact 3 suggests that most link or AS
deletions are indeed network upgrades. We thus propose
to neglect AS and link deletions in our model. As far as
we know, none of the proposed models incorporates node
or link deletions presently.

Our model

Our model constructs a graph accordingly to Facts 1
and 2. In all its generality, our model has five parameters
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(θ, γ, k, q, τ) that will be discussed below. The nodes are
a sequence of n points (x0, . . . , xn−1) randomly chosen in
R

2 according to some probability distribution. We study in
this article two distributions: the uniform distribution over
[0, 1]2, and the distribution of the US population given by
the 1990 census. The construction starts with the point
x0. x0 is the first origin of the graph. This origin, denoted
ω, changes from one node to another regularly over time
in our model, in order to break the model centrality. The
insertion of node xi, i ≥ 1, takes three steps:

1. new node xi is linked to the k distinct nodes xj1 , ..., xjk

that minimize at the time of the insertion:

d(xi, xj) + θ · h(xj , ω); (2)

2. then, q new edges e1, ..., eq are added one after the
other. If G denotes the graph just after the insertion
of edge ej−1, ej is the edge that minimizes the following
quantity:

�(ej) +
γ

i

i∑

a=0

(
hG∪ej (xa, ω) − hG(xa, ω)

)
(3)

where �(ej) denotes the Euclidean length of ej in the
plane, and where hG(xa, ω) and hG∪ej (xa, ω) are the
hop distances of node xa to the origin ω in graphs G
and G ∪ ej respectively. The γ-weighted term in (3) is
thus the expected decrease of the hop distance from
the current nodes to the origin ω;

3. every τ node insertions, change the origin to a random
node xa, chosen with a probability proportional to its
degree: ω := xa.

Note that when k = 1 (resp. k = 2), q = 0 and τ = ∞,
it is the FKP model (resp. FKP2 model). While Step 1
determines how the new node joins the network, the origin
improves at Step 2 its global connectivity to all the other
nodes by adding a new edge in the network. Step 3, moves
the origin randomly, which allows us to get an isotropic
network for a very small amount of computation time –
this basically approximates to a global optimization.

Choosing k, q, τ to model AS graph

Fact 1 suggests that most of the newly created nodes have
degree 1. We have thus chosen k = 1 in our simulation (we
could also have considered k as a random variable). Fact 2
suggests that half of the edges are created independently
from node creation. These insertions take place in step 2
in our model. We have then chosen q = 1. Finally, in order
to maximize our model isotropy, we chose τ = 1: the origin
changes after each iteration.

Our model is left now with only two parameters θ
and γ.

Implementation

Computational efficiency of our model is a central concern.
Randomly changing the origin allows us to save a factor of
n in the computation time: it allows us to obtain isotropy

without having to minimize the hop-distance to all the
other nodes in the trade-offs in steps 1 and 2. Step 2 is the
most time consuming; our implementation takes presently
O(n4) time; this is a serious obstacle to generate relatively
big graphs (> 2000 nodes): generating a 1000 node graph
takes about 15 min on a 1 GHz Powerbook G4 (1 hour for
1500 nodes). Considerable improvements in time perfor-
mance can be achieved using hash tables by hop-distances
to the origin, and Voronöı diagrams. The main goal of this
paper is however to study the pertinence of this approach
for Internet modeling, not yet its optimization. We are
currently working on including these improvements to ob-
tain O(n2+ε) time generation of n node graphs. Figure 10
gives two examples of graphs generated by our model.

The thermodynamic limit

As noted in [2,5] on the FKP model, unless θ or γ depend
on n, the network converges to a constant diameter graph
with a highly connected “kernel” and a large majority of
leaves. This article does not consider θ and γ as functions
of n; the main reason is that our current implementation
only allows us to reach relatively small values of n (n �
1500) and thus adding a dependence on n would not make
sense at this point. Again, this paper is an exploratory
study of the validity of the trade-off optimization principle
to model Internet growth, further improvements should be
considered in the future.

3 Model validation

In order to validate our model we compare it with some
widely used parameters. The reason we use these param-
eters is very empiric: most of the publications refer to
them. We believe that pertinent parameters may differ
from one application to another. It may even be the case
that the best graph model (in the sense: the observed phe-
nomenon behave the same as in reality, and is tractable
on the model) for a given routing problem over the Inter-
net may differ significantly from the actual Internet graph.
Finding which parameters one should observe to compare
two models given a particular application is presently an
important open issue.

The parameters that we measured are:
– the average degree, deg (4− ε trivially for our model);
– the clustering coefficient, Clust: the average probabil-

ity that two neighbors of a given node are directly con-
nected to each other (Note that this basically counts
the number of triangles.);

– the minimum and average eccentricity, exm and ex
respectively: exm = mini maxj h(xi, xj) and ex =
maxj h(·, xj);

– the graph diameter, D;
– the average hop distance, h(·, ·);
– the exponent β of the closest power law to the degree

distribution: Pr{a node has degree d} ∼ d−β ;
– the absolute correlation coefficient ACC of the power

law on degrees (|ACC| ∈ [0, 1]; the correlation is per-
fect if |ACC| = 1, and inexistent if |ACC| = 0).
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Fig. 1. The exponent β as a function of θ in our model. β
is computed in three ways: (1) on all the nodes, (2) on nodes
with degree > 1, and (3) on nodes with degree > 2. The largest
standard deviations are ±10%, and typical values are ±5%.

3.1 Statistical properties of random graphs generated
by our model

We first explore the possible values of the parameters θ
and γ, and then study the evolution of the measured pa-
rameters with the size of the graph. We observe that θ
and γ modify essentially the exponent β of the computed
power law observed on the degree distribution:

Pr{a node has degree d} ∼ d−β . (4)

Influence of γ

Our empirical measurements show that only max(γ, θ)
seems to influence β: for instance, when γ < θ, the graphs
obtained are independent of γ. Therefore, we adopt θ = γ.
We are now left with one single parameter, θ, in our
model.

Influence of θ on the degree power law

θ is the length parameter of the model: it is basically the
maximum length of a link one can draw. Naturally, the
diameter and eccentricity decrease when θ increases. The
exponent β is also a decreasing function of θ: as θ in-
creases, there are more and more high degree nodes. Sur-
prisingly enough, the clustering coefficient also decreases
when θ increases: it is more profitable to connect closer to
the current origin, than drawing shorter links towards its
neighbors. As the graph gets a “smaller world” (smaller
diameter), its clustering coefficient gets smaller too! This
is an interesting peculiarity of these trade-off optimization
based models. Figures 1–7 sum up these observations that
will be discussed below.

Influence of the size of the graph

Table 1 shows the influence of the size n of the graph
on the measured parameters, and compares them to the
measured AS and IR graphs. We have generated graphs
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Fig. 2. The ACC for exponent β as a function of θ in our
model. The largest standard deviations are ±2%, and typical
values are ±1%.
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Fig. 3. Clustering coefficient as a function of θ in our model.
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Fig. 4. Eccentricity as a function of θ in our model.

for two values of θ: θ = 0.03 and θ = 0.001. Both values
yield a satisfying exponent β close to that the Internet
(roughly β 
 2.1 [12]).

We verified that as n increases, the exponent β, the
clustering coefficient and the diameter get closer to AS
graphs values. This may be due to the fact that the highest
graph size we can reach is closer to the AS graph size than
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Table 1. Measurements on our random graph models with k = 1 and q = 1, compared with the measurements made on real
AS and IR graphs.

n θ = γ deg Clust exm ex D h(·, ·) β ACC

20 0.001 3.50 0.2619 3 3.950 5 2.345 0.42 0.43
20 0.030 3.50 0.2444 3 3.850 5 2.235 0.72 0.75
50 0.001 3.80 0.2519 4 5.560 7 3.186 0.98 0.80
50 0.030 3.80 0.2305 4 5.400 7 3.064 0.88 0.76

100 0.001 3.90 0.2268 5 6.850 9 3.862 1.27 0.89
100 0.030 3.90 0.2217 5 6.660 9 3.663 1.27 0.87
200 0.001 3.95 0.2378 5 7.565 10 4.499 1.54 0.89
200 0.030 3.95 0.1992 5 6.830 9 4.129 1.45 0.95
500 0.001 3.98 0.2038 6 9.070 12 5.495 1.85 0.92
500 0.030 3.98 0.1910 5 7.480 9 4.864 1.77 0.94

1000 0.001 3.99 0.2186 7 10.436 14 6.240 1.94 0.93
1000 0.030 3.99 0.1887 6 8.510 11 5.377 2.02 0.94
2000 0.001 3.99 0.2186 7 10.436 14 6.240 2.14 0.93
2000 0.030 3.99 0.1798 6 8.773 11 5.821 2.12 0.96

AS graph 4.18 0.22 —– 7 10 3.62 2.1 >0.96

IR graph 2.8 0.03 —– 20 30 9.51 2.1 (?) >0.96
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Fig. 5. Average eccentricity as a function of θ in our model.
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Fig. 6. Diameter as a function of θ in our model.

to the IR graph size. Hence, comparison with the IR may
not be relevant.

Table 2 compares the parameters measured on FKP
and FKP2 models (q = 0, τ = ∞, and k = 1 or 2 in our
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Fig. 7. Average hop distance as a function of θ in our model.

model) for the same value of θ. We observe that the ex-
ponent β in the FKP model is closer to Internet’s β, but
its clustering coefficient is null and the diameter is much
larger, mainly because the graph is a tree. Concerning the
FKP2 model, we observe that there is no degree 1 node
and that the clustering coefficient is too high compared
to the AS graph. We conclude that our model fits bet-
ter the real values observed on the Internet and improves
considerably the previous approaches based on trade-off
optimization.

Statistical analysis

In order to obtain a precise evolution of the parameters,
we have undertaken a large simulation study. For every
value of θ = γ from 0.001 to 0.1 in steps of 0.001, we have
generated 100 graphs of n = 1000 nodes. For each value
of θ, we computed the average values and standard devi-
ation of the different parameters. The results are shown
in Figures 1–7. We observe that our model is stable and
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Table 2. Measurements on random FKP graphs (k = 1), and FKP2 graphs (k = 2) with θ = 0.03.

n k q deg Clust exm ex D h(·, ·) β ACC

100 1 0 1.98 0 6 8.94 11 5.379 1.85 0.96
100 2 0 3.94 0.2563 4 5.61 7 3.714 1.92 0.95
200 1 0 1.99 0 6 9.36 12 5.884 1.93 0.97
200 2 0 3.97 0.2931 4 6.42 8 4.190 2.03 0.98
500 1 0 2 0 7 10.15 13 6.521 2.16 0.98
500 2 0 4 0.2495 5 7.218 9 4.886 2.21 0.98

1000 1 0 2 0 8 11.4 15 7.018 2.08 0.98
1000 2 0 4 0.2538 5 7.75 10 5.289 2.32 0.98

coherent, i.e., one can obtain any desired β value with an
error of ±5% approximately.

The length parameter θ in the optimization process
controls where a new node or a new link is connected to.
When θ (and γ) is low, any new node connects to a node
near by without paying too much attention to the distance
to the current network origin. The distance to the network
origin increases as the graph grows, and the diameter is
larger. One observes that the diameter/eccentricity ratio
remains almost constant. The node degree is rather low,
because it depends only on the probability of having nodes
near by.

When θ (and γ) is low, the situation for the new links
is similar. They tend to connect nodes near to each other.
Hence, the diameter does not significantly decreases. How-
ever, the clustering coefficient is high because the new
links are created in the local environment, and the prob-
ability of building triangles is high.

On the other hand, when θ (and γ) is high, any new
node tends to connect to a node close to the current net-
work origin, in the sense of the hop distance, regardless
of the Euclidean distance. The diameter of the graph is
then lower. This also creates very popular nodes, which
decreases β. Concerning the links, new extra links tend
to connect popular nodes to distant nodes in order to
decrease the average hop distance to the current origin.
Therefore, triangles are less profitable, and the clustering
coefficient decreases.

Generation based on United States population

Using the underlying geometry of our model, we have gen-
erated graphs where the nodes are distributed according
the US population (based on the 1990 census). This ap-
proach is particularly relevant since Yook et al. [13] have
shown correlation between the localization of the popula-
tion and of the routers. We observe in Figures 8 and 9,
and in Table 3, that the behavior is similar to the uniform
distribution case on the unit square [0, 1]2 and gives satis-
fying pictures of the network3. Note that thanks to step 2
of our generation procedure, extra long links are created
across the US (much longer than θ), in order to improve
communication performance between the two coasts. This
was not the case in the previous FKP and FKP2 models.

3 See for instance:
http://www.caida.org/tools/visualization/mapnet/

Fig. 8. An example of a random graph generated by our model
with the US population distribution, with n = 1000 nodes,
k = 1, q = 1, and θ = γ = 0.03. Each node is represented by a
small disc whose diameter is proportional to its degree.
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Fig. 9. Observed power law on degrees in our random
graph models based on US population distribution, with n =
1000 nodes, k = 1, q = 1, and θ = γ = 0.03.

Note that the population distribution biases the degree
distribution.

4 Conclusion and summary

In this article, we have shown the relevance of a multi-
criteria greedy optimization approach as suggested in [5],
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Table 3. Measurements on our random graph model based on the US population distribution, with θ = γ = 0.03.

n k q deg Clust exm ex D h(·, ·) β ACC

1000 1 1 3.99 0.2081 5 7.103 9 4.364 2.46 0.91

θ = γ = 0.001.

θ = γ = 0.03.

Fig. 10. Two generated graphs of 500 nodes, with k = 1 and
q = 1 and different values for θ and γ.

to model Internet topology. This multicriteria greedy op-
timization approach provides a plausible economical ex-
planation of the observations made of the Internet, such
as the power law on degrees. Another interesting point is
the natural geographic representation of this model which
makes it easy to read and interpret. Note also that it
is still sufficiently simple, so that theoretical descriptions
may not be out of reach. Some peculiarities of our model,
such as the clustering coefficient increasing as the diam-
eter grows, may also help to determine the relationships
between the parameters: small world does not necessarily
imply high clustering coefficient.

Currently, the main weakness of our model is its gen-
eration time. We are currently working on a new imple-
mentation taking advantage of the underlying geometry
to decrease the processing time from O(n4) time (present
implementation) down to O(n2+ε). Another issue is the

relatively small number of degree 1 nodes in comparison
with the Internet.

We also want to stress that the current parameters
used to validate network models may not be appropriate.
Some relationships between them are known. But the in-
dividual relevance of the parameter probably depends on
the target application. It is also clear that because of its
technological complexity and dynamic, the Internet will
certainly not be modeled by one concept alone (prefer-
ential attachment [1], imitation [9], or trade-off optimiza-
tion [5], ...). For instance, these different processes may
influence the structure of the Internet at different levels:
e.g., trade-off optimization at the router level, preferen-
tial attachment at the AS level, and imitation at the web
level; we may also have to consider other kind of levels.
One will probably need to mix these concepts with others
in oder to obtain a satisfying behavior.

We would like to thank Claire Kenyon for very useful and in-
teresting discussions.
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